[1]Dugan JM, Gough JE, Eichhorn SJ,et al.Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine(Lond). 2013;8(2):287-298.[2]Petersen N, Gatenholm P.Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol. 2011;91(5):1277-1286.[3]Moreira S,Silva NB,Almeida-Lima J,et al.BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett. 2009;189(3):235-241.[4]Helenius G, Backdahl H, Bodin A,et al. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A.2006;76(2): 431-438.[5]Esguerra M,Fink H,Laschke MW,et al.Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A. 2010;93(1):140-149.[6]杨敬彤,石毅,贾原媛,等.大鼠脂肪干细胞与细菌纤维素膜的复合培养[J].中国组织工程研究与临床康复, 2009,13(1):84-87.[7]李扬,沈建成,徐枫,等. 纳米细菌纤维素的细胞生物相容性[J].中国组织工程研究, 2012,16(51): 9541-9545.[8]王宗良,贾原媛,石毅,等. 纳米细菌纤维素膜的表征与生物相容性研究[J]. 高等学校化学学报,2009,30(8): 1553-1558.[9]陈艳梅,奚廷斐,郑琪,等. 细菌纤维素的体内降解及其组织相容性[J].科技导报,2009,27(21):61-66.[10]李峰,朱昌来,尤庆生,等. 组织工程化纳米细菌纤维素管体内生物相容性研究[J]. 中国生物医学工程学报,2009,28(5):760-765.[11]朱昌来,李峰,尤庆生,等. 纳米细菌纤维素的制备及其超微结构镜观察[J].生物医学工程研究,2008,27(4):287-290.[12]Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R,et al. Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film. Biotechnol Prog. 2006;22(4): 1194-1199.[13]邱竣,柳大烈,张阳,等. 细菌纤维素减轻兔耳增生性瘢痕的作用[J].中国组织工程研究与临床康复, 2011,15(25):4597-4601.[14]马霞, 张华, 陈世文.细菌纤维素膜作为创伤性敷料的可行性[J].中国组织工程研究与临床康复, 2010,14(12):2261-2264. [15]马霞,陈世文,王瑞明,等.生物新材料细菌纤维素与深Ⅱ度烧伤大鼠皮肤的创面愈合[J].中国组织工程研究与临床康复, 2009, 13(34):6793-6796.[16]Backdahl H, Helenius G, Bodin A, et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials.2006;27(9):2141-2149.[17]Zahedmanesh H, Mackle JN, Sellborn A,et al.Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater. 2011;97(1):105-113.[18]Bodin A, Ahrenstedt L, Fink H ,et al. Modification of nanocellulose with a xyloglucan-RGD conjugateenhances adhesion and proliferation of endothelial cells: Implications for tissue engineering. Biomacromolecules 2007;8:3697–3704.[19]Wippermann J, Schumann D, Klemm D,et al.Preliminary Results of Small Arterial Substitute Performed with a New Cylindrical Biomaterial Composed of Bacterial Cellulose. Eur J Vasc Endovasc Surg. 2009;37(5):592-596.[20]Svensson A, Nicklasson E, Harrah T,et al.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials.2005;26(4):419-431.[21]Bodin A, Concaro S, Brittberg M, et al.Bacterial cellulose as a potential meniscus Implant.J Tissue Eng Regen Med. 2007; 1(5):406-408.[22]Andersson J, Stenhamre H, Bäckdahl H,et al .Behavior of human chondrocytes in engineered porous bacterial bcellulose scaffolds. J Biomed Mater Res A. 2010;94(4): 1124-1132.[23]Lopes J.L., Machado,J.M. Castanheira L,et al. Friction and wear behaviour of bacterial cellulose against articular cartilage. Wear.2011;(271):2328-2333.[24]Zaborowska M, Bodin A, Bäckdahl H,et al.Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomaterialia.2010;(6):2540-2547.[25]Brackmann C, Zaborowska M, Sundberg J,et al.In situ Imaging of Collagen Synthesis by Osteoprogenitor Cells in Microporous Bacterial Cellulose Scaffolds. Tissue Eng Part C Methods. 2012;18(3):227-234. [26]Favi PM, Benson RS, Neilsen NR,et al.Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterialcellulose hydrogel scaffolds. Mater Sci Eng C Mater Biol Appl. 2013;33(4):1935-1944.[27]Honga L, Wang YL, Jia SR, et al.Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Materials Letters.2006;(60):1710-1713.[28]Tazi N, Zhang Z, Messaddeq Y,et al. Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express. 2012;2(1): 61.[29]Saska S, Barud HS, Gaspar AM,et al.Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration. Int J Biomater.2011;2011:175362.[30]Fang B, Wan YZ, Tang TT,et al. Proliferation and Osteoblastic Differentiation of Human Bone Marrow Stromal Cells on Hydroxyapatite/Bacterial Cellulose Nanocomposite Scaffolds. Tissue Eng Part A. 2009;15(5):1091-1098.[31]郑琪,奚廷斐,陈艳梅,等. 纳米羟基磷灰石细菌纤维素复合材料及其降解物的细胞相容性评价[J].中国组织工程研究与临床康复,2010,14(3):405-409.[32]姚志文, 王红忠, 蔡踝,等.多孔细菌纤维素 聚乳酸乙醇酸 羟基磷灰石复合支架的制备及性能研究[J].中国医药导报,2012,9(9): 101-104.[33]Shi Q, Li Y, Sun J,et al.The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials. 2012;(33):6644-6649.[34]Grande CJ, Torres FG, Gomez CM,et al.Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomaterialia. 2009;(5):1605-1615.[35]Bäckdahl H, Esguerra M, Delbro D,et al.Engineering microporosity in bacterial cellulose Scaffolds. J Tissue Eng Regen Med.2008;2(6):320-330.[36]Martínez H, Brackmann C, Enejder A,et al.Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A. 2012;100(4):948-957[37]Hirayama K, Okitsu T, Teramae H,et al.Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials.2013;34(10):2421-2427.[38]Pértile R, Moreira S, Andrade F,et al.Bacterial Cellulose Modified Using Recombinant Proteins to Improve Neuronal and Mesenchymal Cell Adhesion. Biotechnol Prog.2012; 28(2):526-532.[39]Li Jian , Wan Yizao , Li Lianfeng,et al.Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Materials Science and Engineering C. 2009;(29):1635–1642.[40]Bodin A, Gustafsson L, Gatenholm P,et al. Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate. J Biomater Sci Polym Ed.2006;17(4):435-47[41]Saska S, Scarel-Caminaga RM, Teixeira LN,et al. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med.2012; 23(9): 2253-2266.[42]Wang J, Wan YZ, Luo HL,et al. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater. Sci. Eng. C-Mater. Biol. Appl. 2012;32(3): 536–541. [43]刘继光,刘翯翀,李慕勤,等. 胶原/细菌纤维素复合材料的细胞相容性评价[J]. 中国体视学与图像析,2012,17(2):138-142.[44]蔡志江, 侯成伟.细菌纤维素-明胶复合多孔支架材料的制备与表征[J]. 高分子材料科学与工程,2012,28(8):140-143.[45]Millon LE, Guhados G, Wan W.Anisotropic Polyvinyl Alcohol—Bacterial Cellulose Nanocomposite for Biomedical Applications. J Biomed Mater Res B Appl Biomater. 2008; 86(2):444-452.[46]Millon LE, Wan WK.The Polyvinyl Alcohol–Bacterial Cellulose System As A New Nanocomposite for Biomedical Applications.J Biomed Mater Res B Appl Biomater. 2006; 79(2):245-253.[47]Hu Y, Catchmark JM. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater.2011;7(7):2835-2845.[48]Bodin A, Bharadwaj S, Wu S,et al.Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials. 2010;31(34):8889-8901. |